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We review the physical principles which are at the basis of recent field-theoretic 
computations of the critical exponents in two- and three-dimensional systems. We 
concentrate on those points that do not show up explicitly in the more standard E- 
expansion : they must be discussed with care if one uses a perturbative approach at 
fixed space dimensions (the loop expansion). We present in detail simple 
computations of the critical exponents, while we summarize the results of longer 
and more accurate computations. 
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1. I N T R O D U C T I O N  

There have been many  recent approaches  toward  a deeper unders tanding of  
second-order  phase transitions. The phenomenologica l  K a d a n o f f - W i d o m  
scaling laws ~1'2) are in quite good  agreement  with the experimental da ta  and 
the high-temperature  expansions (for a review see Ref. 3). Also, the 
universality hypothesis  ~1) (independence o f  the critical exponents f rom the 
detailed structure o f  the interaction) seems to be satisfied. The intensive use o f  
the renormalizat ion g roup  ~4-v) has produced a neat derivation o f  the scaling 
laws for static and dynamic  phenomena  and has clarified the deep reasons for 
the validity o f  the universality hypothesis. Very simple approximate  com- 
puta t ions  have been done for m a n y  systems, ranging f rom spin-glasses <8) to 
Reggeon field theory, w) 

In the f ramework  of  a field-theoretic approach  high-precision estimates 
o f  the critical exponents o f  the three-dimensional Ising model  have been 
done j10,11) These estimates involve an explicit evaluat ion o f  all diagrams up 
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to six loops and approximate predictions for the size of the neglected higher 
loop diagrams. (12) 

The aim of this paper is to describe in detail the foundations of the 
method used in these high-precision estimates; indeed, this paper is a 
shortened, revised version of unpublished 1973 Cargese Lecture Notes, (~3) 
which were the basis of the computations of Refs. 10 and 11. 

To present a microscopic derivation of the scaling laws is rather difficult. 
Many subtle questions must be settled: thermodynamic quantities must be 
computed just at the point where their dependence on the temperature is not 
analytic; any sort of high- or low-temperature expansion is divergent. The 
theory of second-order phase transitions is dominated by the quest for 
functions which are regular near the transition. 

In this paper we concentrate on the derivation of the static scaling laws 
for a magnetic system above the transition at zero external field. Our 
treatment has many points in common with the standard approach ~14-~ 8); the 
main difference is that we always work in the massive (finite correlation 
length) theory also at the critical temperature. This approach bypasses the 
problems connected with the infrared divergences present in a perturbative 
approach; the theory admits a closed formulation in a system of arbitrary 
dimensions. 

This paper is divided into nine sections. In Section 2 we present the model 
which we will consider as the prototype of a system undergoing a second-order 
phase transition and which we will study in the other sections. In Section 3 we 
explain why a straightforward approach does not work near the critical 
temperature, and how infrared divergences arise. In analogy with quantum 
electrodynamics, we conjecture that the introduction of renormalized quan- 
tities will avoid the problems. All the results derived in the rest of the paper are 
based on this conjecture: a rigorous proof  is lacking, although there are 
results, based on the Lebowitz inequality, which go in this direction. (19) In 
Section 4 we derive the Kadanoff  Widom scaling laws and prove that the 
critical exponents are connected to renormalized correlation functions 
computed at some finite value of the external momenta. In the next section we 
study the behavior of the correlation functions at the critical temperature, An 
exact expression for these correlation functions has been found. If it is 
expanded in powers of the bare coupling constant, infrared divergences 
appear; however, if a different expansion is used, finite results are obtained 
also at the critical temperature. Infrared divergences show up in a non- 
analytical dependence of the correlations functions on the bare coupling 
constant. In Section 6 we present simple applications of the formalism; critical 
exponents are computed using very simple approximations; the results of 
much more lengthy and accurate computations are reported. In the next 
section we show that the range of allowed values for the renormalized 
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coupling constant is a closed interval. In Section 8 we show how the concept of  
a universal critical behavior arises naturally in this framework;  we derive a 
universal equation for the correlation functions at the critical temperature. In 
the last section we present our final conclusions and comments.  

In the appendix we explain some notations used in this paper. 

2. THE  M O D E L  

In this paper we concentrate on a special kind of continuous Ising model 
in the limit of  zero lattice spacing. In presence of an external magnetic field H 
the partition function is 

Z(H, fl) ~ f d[O] exp[- f dDx ~(x) 1 (2.1) 

where 

~ ( x )  = �89 c?,,0 + �89 2 + (u/4 !)4 4 
(2.2) 

M2(fl) = M2(0) + fl; fl = 1/KT 
D is the dimension of the space and ~ d [0 ]  stands for functional integration. In 
the two- and three-dimensional cases, there are rigorous proofs of  the 
existence of the model and a precise mathematical meaning can be given to the 
words "functional integration." The only ultraviolet divergences present can 
be absorbed by assuming that M2(0) is a polynomial in g with infinite 
coefficient; i.e., in the language of field theory, the interaction is super- 
renormalizable for D < 4. (191 

In the limit u = 0 we obtain the Gaussian model and the perturbative 
expansion in powers o fu  can be easily obtained. It is identical to the Feynman 
graph expansion for a relativistic 4 4 theory in D -  1 space, one time 
dimension. It has been rigorously proved that the correlation functions of  the 
two theories are connected through a Wick rotation. (2~ The correlation 
functions of  statistical mechanics are the Schwinger functions (22) (Wightman 
functions (23) at imaginary time in relativistic theory). In Fourier space they 
are the analytic continuation of  the time-ordered functions in the Euclidean 
region. 

This model can be generalized by introducing a multiplet of  N fields 
which form a representation of the O(N) group. The partition function is (6'24) 

Z(I4~, fl) o~ f @ d[O,] exp[- f d~(x) 1 (2.3) 

where 

Z(x) = �89 0.0~ + �89 + (1/4 !)(0,0,) 2 (2.4) 
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If we take N = 1, this model reduces to the first one. For N = 2 we recover 
both the Ginzburg-Landau ~25) partition function of a superconductor and 
the Landau(26,27) partition function of superfluid helium near the 2 transition. 
A special kind of continuous Heisenberg model is obtained for N = 3. In the 
limit N goes to infinity we get the spherical model. (28) 

At each order in perturbation theory the N dependence of the correlation 
functions comes from multiplicity factors which multiply each Feynman 
diagram. These factors are polynomial in N and they can be analytically 
continued to noninteger N. It has been suggested that the N = 0 correlation 
functions are connected to some properties of the self-avoiding walk 
problem. ~29~ It may be of interest to note that for N--- - 2  the two-point 
correlation function above the transition coincides with that of the Gaussian 
model.(3o) 

The partition function of a "  realistic" spin-1/2 model can be represented 
in a similar way: even higher powers of 4) are present and the Lagrangian is no 
longer a polynomial, ca 1) According to the conventional wisdom, higher order 
couplings are irrelevant as far as the critical behavior is concerned; the model 
(2.2) and the Ising model on a real lattice belong to the same universality class. 
The arguments which lead to this belief are briefly discussed in Section 8. 

The following simple remark will be quite useful in the rest of the paper: 
the argument of the exponential is a pure number and all the quantities have 
the dimension of  a length to some power. Defining the length dimension to be 
-1 ,  we find 

Ix] = - 1 ,  [d/dx] = 1, [q~] = (D - 2)/2, [M]  = 1, 

[u] = 4 - D, [q~2] = D - 2, [G2] = - 2 ,  [F2] = 2 
(2.5) 

[GN] = D - N(�89 + 1), [FN] = D - U [ -  1 + �89 

[GN,2] = [Gu] - 2, [Fu4~2 ] = [Fu] - 2, [D,202] = D - 4 

where the square brackets stand for "dimension of," and G u and F s are 
respectively the Fourier transforms of the connected N-point correlation 
function and of the amputated, one-particle, irreducible N-point correlation 
function. The notation is defined in the appendix. 

Dimensional analysis may be used extensively; e.g., 

1 f u ~-1 1 ' r  u ~ L r -  - ~vl A Gz(P, , ,  M) = A = A | ~=~_~, ~ ; l  . . . .  (2.6) 

3. THE A S S U M P T I O N S  

The simplest approximation we can make is to take u = 0, or neglect 
terms proportional to high powers of the field. Naive arguments suggest that 
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this approximation may be valid only for dimensions greater than four. 
However, in lower dimensions also it gives a first semiqualitative description 
of  a second-order phase transition. (1) 

In this situation, the model can be easily solved. ~32) The two-point 
correlation function is 

G2(K, T) = 1/(K 2 + M 2) (3.1) 

All other connected correlation functions are zero. The transition temperature 
is at M 2 = 0. The transition is characterized by the fact that the correlation 
functions become singular at zero external momenta .  These singularities are 
produced from the nonexponential decrease of  correlation functions in the 
configuration space at large distances. 

Introducing the reduced temperature "c ~c ( T o -  T) /Tc ,  we can write 
G2(K , Z) for small ~ as 

where 

G2(K , Z) = "C-~f(K/'c ~) (3.2) 

= 1, v = �89 f ( x )  = 1/(1 + x 2) (3.3) 

The scaling laws (1) state that a formula similar to (3.2) is valid near the 
transition for not too large K and also for u different from zero. The critical 
exponents 7 and v and the function h may, however, be different from (3.3). It 
is also assumed that (3.2) has a finite, nonzero limit when r --~ 0 at Kdifferent  
from zero : 

G(K, O) = 1 /K 2 ", 2 - t I = 7/v (3.4) 

The main problem of  the theory of second-order phase transitions is to prove 
this hypothesis and to compute v, 7, and h. 

I f  u is different from zero, we can develop the partition function and the 
correlation function in powers of  u, expanding the exponential in (2.10) (see 
the appendix) 

Z G(2 ~0 k d[ r  i dDyi CP4(Yi) 

x exp f d n x  [ - - �89162 c3"r -- M e r  (3.5) 

Unfortunately,  this expansion is not convergent and it may be regarded only 
as an asymptotic expansion. It has been proved (33) that (3.5) is not 
convergent, but its Borel sum exists and is equal to the functional integral 
(2.10). These problems are connected with the nonexistence of the theory for 
negative u. 
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Near the phase transition new pathologies arise. The first effect of 
introducing a nonzero coupling constant is a shift in the transition tempera- 
ture. This difficulty may be bypassed by making a perturbation in u not at 
fixed M 2, but at fixed M 2 - Mc 2 = ~t2. Then Mc2(u) is the point at which the 
phase transition occurs. Near  the transition, the most singular part of  the 
dependence of the correlation function on the temperature comes from ~ 2  
and not from u. We can consistently assume that ~t  2 is proportional to r and 
neglect the temperature dependence of u. The error involved in this 
approximation affects only terms that are not singular near the critical 
temperature. 

Although the introduction of ASr improves the situation, it remains 
hopeless. The dimensionless coupling constant in which we are making our 
expansion is u/M 4- ~; it goes to infinity when ~t  goes to zero in any dimension 
less than four. The perturbative expansion is useless if ~t  is small, i.e., near the 
transition. It is well known that it is very hard to reconstruct the behavior of  a 
funct ionf(x)  when x goes to infinity from the knowledge of the first few terms 
of its Taylor expansion around x = 0. 

The situation is still worse if we start directly from M = 0 and limit 
ourselves to the study of correlation functions at nonzero external momenta.  
In this case the perturbative expansion does not exist, because of infrared 
divergences. 

Let us study a simple example: the diagram 

K ~  1 ~  (3.6/ 

in the massless case is proportional  to K -  ~ + o if 2 < D < 4. Its contribution to 
F 4 is proportional to the integral 

fdDP 2~ (3.7) 
1 

P t P  + K) 2 

This integral is infrared-convergent at K different from zero if D > 2 and 
ultraviolet-convergent if D < 4; in this interval of  dimension, power counting 
implies a simple power behavior in K. 

The chain of  N bubbles 

(3.8) 

factorizes into a product of  N integrals and is proportional t o / ~ -  ~)N. I f  (D 
-- 4)N < - D, the Fourier transform with respect to K cannot be performed, 
and the vertex is no longer an L 1 function. Any diagram having this chain as 
subgraph is divergent, e.g., 
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(3.9) 

We will see later that these divergences are connected to the fact that 
correlation functions are not C ~ functions of u around u = 0 in the zero-mass 
case. This effect is a subtle one; it is present only at an order N > D/(4 - D). I f  
we work in a dimension near enough to four, it appears only at a very high 
order in the coupling constant and it disappears completely in dimensions 
infinitesimally near to four. We stress that any computat ion of the critical 
exponents done in 4 - e dimensions is) using the renormalization group in the 
zero-mass theory does not contain any information on the critical behavior of  
a system in 3.99 dimensions without an additional hypothesis on the 
resummation of these infrared singularities. 

The conclusion is that the limit &r --, 0 at fixed u is strictly connected with 
the limit u - ,  oc at fixed a~r and cannot be studied by treating u as a small 
perturbation. 

Similar problems are also present in renormalizable theories such as 
quantum electrodynamics (QED) in four dimensions: at each finite order in 
perturbation theory, the presence of the ultraviolet divergence destroys the 
possibility of  performing an expansion in powers of  the bare coupling 
constant334) After more than fifteen years of  theoretical work, this difficulty 
has been overcome by introducing renormalized parameters such as the 
physical charge and mass of  the electron and by performing an expansion of 
correlation functions in powers of  the renormalized parameters. ~35'361 The 
perturbative expansion for correlation functions at low external momenta  is 
perfectly well defined and regular, although the bare parameters are infinite at 
each order in perturbation theory. The drawback is that in the large- 
momentum region the effective coupling constant is of  order c~ lg K 2, and 
clearly blows up when the momenta  go to infinity. {36~ Renormalized 
perturbation expansion is useless in this region because the large-momentum 
region is controlled by the bare coupling constant and not by the renormalized 
one. The same phenomenon happens also in our case if D = 4. I f  D < 4, 
problems in the critical region arise from the fact that the dimensionless bare 
coupling constant u / M  ~4-~1/2 goes to infinity, as in QED. We hope that the 
introduction of the renormalized integral equation will be of  some help. The 
perturbative solution of  these equations produces the renormalized per- 
turbation expansion (RPE). The analogy with QED suggests that we can trust 
RPE only for the results concerning correlation functions computed at low 
external momenta,  but we should not believe in any direct computat ion of the 
bare quantities or of  the behavior of  correlation functions in the large- 
momentum region, although all these quantities have a well-defined per- 
turbative expansion in powers of  the renormalized coupling constant. 
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We are led to the following conjecture: All renormalized correlation 
functions (to be defined later) at fixed external momenta have a finite limit 
when the bare coupling constant goes to infinity at fixed m. The whole theory 
of second-order phase transitions is explicitly or implicitly founded on this 
hypothesis, whose intuitive justification comes from the idea that a too strong 
repulsive interaction shields itself, producing a finite result. An explicit 
realization of this phenomenon may be found in the large-N limit (37 391 at all 
orders in 1 IN  or in the D = 1 case (anharmonic quantum oscillator). We note 
that the bare coupling constant is the limit of the four-point functions when 
the external momenta become very large. Our conjecture states that we can 
reach a situation where the four-point function goes to infinity in the large- 
momentum region, but no infinity is present in the correlation functions in the 
finite-momentum region, In a very rough sense, the low- and the high- 
momentum correlation functions are decoupled in the integral equations. The 
large-momentum behavior of correlation functions comes from the internal 
region of integration where all the momenta are large, and the main 
contribution to the correlation functions in the low-momentum region comes 
from the region of integration where all the momenta are low, ~4~ We suppose 
that we can find solutions to these equations whose high-energy behavior is 
singular with a perfectly regular low-energy behavior, This may be possible if 
the large-momentum behavior of the four-point function is such that no new 
ultraviolet divergences are created when the bare coupling constant goes to 
infinity. If this condition is not violated, the low-momentum behavior is quite 
insensitive to the high-momentum behavior. The construction of RPE is 
straightforward and it is discussed in detail in many books (see, e.g., Refs. 36). 
We present here only a sketch of the fundamental steps. We introduce 
renormalized q5 and 4) 2 fields which are proportional to the bare ones: 

~9 R = Z 1 1 / 2 ~ ) ,  (~R 2 ~- Z 2  1(~) 2 (3 .10)  

The constants of proportionality are fixed from the conditions 

d 
d K  2 [FzR(KZ)]tK2= 0 = 1, F~,,o~(O, 0 ) =  1 (3.1 l) 

The renormalized mass and coupling constant are defined as 

m 2 = F2R(0) = [-G2R(0)] - 1 ,  g = F4R(0, 0, 0 )m o - 4  (3.12) 

The Z1, Z2, and g are clearly dimensionless. Note that in general ~bR 2 is only 
proportional but not equal to (0R) 2. It is easy to check that 

m 2 = M2[1 + O ( u / M 4 - ~  

Z 1 = 1 + O[uZ/M 20"-D)] 
(3.13) 

Z 2 = 1 -~- O ( u / M  4 -  e) 

g = u / m  4 - 0  + O[u2/M 2(4-D)] 
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The physical meaning of these parameters follows from the relation 

G2(K ) = Z l / [ m  2 + K 2 + O(K4)] (3.14) 

m- 1 is the correlation length ~; rh- 2 = D7/- 2 . Z l  is the magnetic susceptibility 
X; Z2 is Z l ( d / & ) r h  2 = Z l (d /dM2)m2;  and D+~,o2(0) is the specific heat, i.e., the 
second derivative with respect to the temperature of the logarithm of the 
partition function. All the correlation functions have an expansion in powers 
of g at fixed m, where no divergences appear in four dimensions also. 
However, in this framework we cannot compute the bare coupling constant 
without studying the large-momentum behavior of the theory, going outside 
of the range of validity of RPE. The problem that we have to solve is to 
compute the bare coupling constant using as input only correlation functions 
in the low-momentum region, or to compute the large-momentum behavior 
from the low-momentum behavior. This problem seems very hard because we 
know that the two momentum regions are decoupled in the integral equations. 
The answer to such problems is contained in the following sections and is the 
main result of this work. 

We recall that the following has been rigorously proved, using the 
Lebowitz inequalityC~9~: 

0 ~< g <~ A (3.15) 

where A is a computable constant of order 1. If  g(u) is a monotonically 
increasing function (or has only a finite number of oscillations), as is 
reasonable, then limu~ o~g(u) exists and is finite. Although a crucial inequality 
is missing to extend this argument to all Green's functions, the rigorous result 
(3.15) strongly supports the hypothesis of finiteness of the renormalized 
Green's functions in the infinite coupling limit. 

The reader may observe that the whole procedure seems terribly 
complicated. Why does one not use the integral equation directly in the large- 
momentum region, which decouples from the low momenta, and solve the 
equations in the large-momentum region ? The answer is that this alternative 
approach has been tried in the past. (4~ Solving integral equations is not an 
easy job and it is hard to make good approximations. 

An explicit computation of the state equations seems to be nearly 
impossible. As far as the critical exponents are concerned, safe results are 
obtained in the 1/Nexpansion (44) and they coincide with those obtained in the 
conventional approach. Rather good results for the critical exponents have 
been obtained also in the case N = 1 by truncating in an appropriate way the 
nonlinear integral equations for the masstess theory and by making full use of 
the constraints dictated by conformal invariance/45) 
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4. THE SCALING LAWS 

The problem we will study in this section is how to compute the bare 
coupling constant and the renormalization constants as functions of the 
renormalized coupling constant. 

It is possible to prove by direct inspection of  the diagrams in perturbation 
theory that 

Z11 = lim ,~2K2G2R(,~K), tKI v~ 0 
. a . +  oo 

(Z2Z1)- 1 = lim Z2K2Gg,2(AK, 2p),IKI ~ 0, lp4 v~ 0, IK + Pl =~ O 
,~--+ oo 

Z~Zu = lim F4R(Zpl, 2pz,  2pa), Ipll ~= 0, IP21 # 0, [P3[ =~ 0 

LPl + P2t ~ 0, lPl + P3I @ 0 

IP3 + P2[ ~ 0, IPl + P2 + P3I 4:0 
(4.1) 

The interaction does not change the large-momentum behavior of the 
correlation functions. 

However, (4.1) is of no practical interest insofar as it involves correlation 
functions computed in the very large-momentum region, where we cannot 
trust RPE. Our goal is to find formulas which are equivalent to (4.1), but 
involve only correlation functions computed at fixed external momenta. 

We introduce the differential operator A defined by (46'47) 

A an~ ~ (4.2) = n3 ~.~7g_2 -- 3lgr~2 ~ 

Using definitions (3.1 O) and (3.11), we prove the following chain of identities: 

th 2 c~Gu = rh 2 ' 8 M  2 OGu = tfi 2 0 M  z 

2 3MZ 
= rh ~ - u Z 2 G m ,  R2 = fft2GNoR2 (4.3) 

The action of the A operator on correlation functions can be computed in 
RPE; finite results are obtained also if the theory is renormalizable, like QED, 
in four dimensions. Instead of A we will use the operator A, which is 
proportional to A; the proportionality constant is fixed from the condition 
A m  2 = m 2. We introduce A only to be closer to the standard notation. (46) The 
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following functions can be defined. 

2 1 2 ~ r 4 ( 0  , O, O) ~--- IT/4 DhQq)A 8 R 2 8K--- 2 F 2 ( K )  = --c1~);  

AF2R,R2(0, 0) = c2(q) + c1(9) (4.4) 

Using definitions (3.10)-(3.12), we find 

Ag = -�89 - D)g + h(q) - 2gcl(q ) - b(q) = -�89 - D)g + O(g 2) 

A Z  1 ~- c 1 Q ~ ) Z , ,  A Z  2 = c2Q~)Z 2 (4 .5 )  

We introduce the notation 

u = m4-Z)N(g) (4.6) 

We apply the A operator to both sides of (4.6) : 

Au = 0 = m4-D[�89 - D) + b(g) (5/6g]N[g] (4.7) 

The solution of the differential equation (4.2) is uniquely fixed by the 
condition (3.13) ;O4(;) 

N(g) = g exp \2-b~5 dg' (4.8) 

b(q) is negative for small y, N(9) is monotonically increasing in the region 
between 0 and the first zero of b(9). In this region we can define an inverse 
function p such that 

y = p[u /m 4-D] (4.9) 

The same technique can be used to obtain 

Zi(q)  = exp ~ g,  Z2(q) = exp b~-7) dg' (4.10) 

Let us now try to use these formulas to study the critical behavior of the 
partition function. 

In the limit u/m 4 - v  __~ oo the integral defining N(q) must diverge, and this 
is possible only if the b~)  function has a zero at a positive point go. If we 
suppose that the function has a simple zero with slope b', then 

d b(g) ~=g, b' = ~  > 0 (4.11) 

Equations (4.8)-(4.10) simplify in the limit u - *  oo 

u _ H ( g  ~ _ g ~ - ( ~ - . ) / 2 ~ ,  [ ( . V2b,,4-o, 1 
g = g~L1 - \ ~ /  J 

(4.12) 
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where 

;014 o ,  1 H = g~ exp 2b(g') g 2b'(g~ - g) dg' (4.13) 

If  b' = 0, but b" r 0, 

1 
g = g c  l [ / ) ' g ' u ' m  4-D" + (4.14) 

In any case g goes to gc when ul/'*-Z)/m goes to infinity, Note  that the bare 
coupling constant  has a negative power in (4.12). 

Putt ing (4.12) into (4.10), we obtain 

m 2b' 

(4.15) 

where cl c = cl(gc) and ca c = c2~G). Using the definitions o f Z  1 and Z2, we find 

d m 2 / d M 2  = d m 2 / d T  = m2~1/2~ - 1) (4.16) 

Relation (4.16) implies that, if v > 0, 

m = z", Z1 = m" (4.17) 
where 

q = 2ct c, v = 1/(2 - 2cS) (4.18) 

The relations (2.13) and (3.14) imply the scaling law for the two-point  
correlat ion function : 

Gz(K,  ~) = (1/r~'){Jo[K/z v] + rv~'f~[K/z v] + .-.} (4.19) 

where 
7 = v[2 - t/], co --- 2b' (4.20) 

The limit z - ,  0 is done at K/z  ~ constant ;  the study of  the behavior  o f  
correlat ion functions in the limit z ~ 0 at fixed Krequires  a different and more  
complicated analysis, which will be the object of  the next section. 

The corrections to scaling laws have a simple power behavior,  which is 
connected to b'. Similar scaling laws can be derived for high-order  correlat ion 
functions. The same technique can be used to study the behavior  o f  the specific 
heat C = D~2~2(0). We introduce the function 

A[De,2~,~(0)] = (1 /m4-~) l (g )  (4.21) 

Using the definition of  the renormalized field, we find 

0 lg m 2 D,~e~ff0) = ADo~2(0) = (Zz)Zz~D4aR24~Rz(0) -l- 2CzQq)D~b24a2(0 ) 

(4.22) 
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The solution of this equation is 

C(g) = Dr 1 fo' dgl = u ~ ; ~  N(g')[Z~(g')]2l(g ') (4.23) 

Near the transition it simplifies to 

C ~ Clm~/V/o: + C O = Cl"r~/a + C O (4.24) 

where 

= 2 - Dv (4.25) 

and Co and C1 are computable constants. For  e = 0 the singularity of  the 
specific heat is logarithmic, and for e negative we find a constant term plus an 
irregular term. The presence of the regular term Co allows a positive specific 
heat also for negative c~. 

We stress that all our results rely on the assumption that correlation 
functions have a limit when the bare coupling constant goes to infinity at fixed 
mass, i.e., they have a limit when g goes to gc. If  we relinquish this hypothesis, 
no conclusion can be drawn, e.g., if c2(9)= s in[1 / (#c-  g)] we find an 
oscillatory behavior. If  l(q) is singular at g = go, we obtain a violation of the 
scaring law for the specific heat. 

5. THE C O R R E L A T I O N  F U N C T I O N  AT  THE 
CRIT ICAL T E M P E R A T U R E  

In this section we study the behavior of correlation functions at the 
critical temperature, i.e., in the zero-mass theory. These correlation functions 
arc connected by an infinite scale transformation with the correlation function 
of the massive theory at the infinite bare coupling constant. Our aim is to 
express the correlation functions in both situations as an integral over 
correlation functions of  the massive theory. Such an integral should be 
dominated by the region of integration where the external momenta are 
comparable with the mass. 

For the sake of  simplicity we study only the correlation function of  the r 
field. A similar analysis can be performed on the correlation function of  r 
From (3.10) and (4.5) we derive the identity (46-48,14) 

AGuR(pim2, g)=[Am2 6~m z b ~ ]  + Agog + AZ GN"(P[m 2, g) 

= m e + b(g) ~ + cl(g) GNR(P[ mz, g) (5.1) 
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Using dimensional analysis, it can be written as 

I 1 0  ~ 9 1 N ]  2 AGNR(2PIm2, g) = - 5 2 ~ + b ( g )  + s d N + ~ c l ( g )  Gu()~Plm ,g) 

dN = [GN] (5.2) 

A similar equation can be derived for the FN functions 

AFNR(2plm2' g) = --5 )" ~ + b(g) ~g + 5 6 N - 2 c l (g ) FuR( ;,PIm 2, g) 

6N = [Fu] (5.3) 

Equations (5.3) are identities which are valid at each order in perturbation 
theory; however, we can also consider them as partial differential equations 
for the function GN (FN), assuming AGN (AFs) is known. This linear, 
inhomogeneous differential equation has an infinite number of solutions. 
However, as shown in Ref. 49, there is only one solution which satisfies the 
physical requirement of being regular in 2 and g around the lines 2 = 0, g = 0. 
This solution is 

G~vR()~PIm 2, g) 

) 
3o b(g') LR(g')J LZ,(g')J ~ PIm2, g ' /  

~- -- 2~dN i~ ~- dx X- dN~LZl [.g_~ ~/g)l~21 (g) ~--N/2 AGNR(xpID,12 ' ~(g, ~ ) ) 
(5.4) 

where we have introduced the new functions 

R(g) = [N(g)]- 1/(4-D), R- l(x) = p[x-(4-z))], (5.5) 

9(g, x) = R-1 [xR(g)] 

The functions N, Z, and p are defined in Eqs. (4.8)-(4.10). These functions 
have the following limits: 

g -* 0: R(g) --~ g -  1/(,*-D), g --~ go: R(g) --~ A(gc -- g)l/2b" 

A = gcl/Zb'H -1/(4-n) 
x-- ,  oo: R - l ( x ) - +  x -(4-D), x - * 0 :  R - l ( x ) - - ,  g c - ( x / A )  2b' 

~(g, l) = g 

x-+ oo: ~ ( g , x ) - ~  N(g)x  -(4-D) (5.6) 

Note that the function AG can be computed from the same loop integral 
as G; the only difference is that one propagator 1/(K 2 + m 2) is changed to 
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- 1/(K 2 + m2) 2. This substitution suppresses the high-momentum region in 
the loop integration. At each finite order in perturbation theory, we find for 
generical momenta p,t4s- 50~ 

AGNR(2p)/GNR(2P) -~ 0 (5.7) 

However, perturbation theory is useless in the large-momentum region for 
very large coupling constant. Nevertheless, we conjecture that (5.7) is true. 
The whole analysis of the behavior of correlation functions at the critical 
temperature depends heavily on this assumption. It is interesting to note that 
(5.7) is satisfied at all orders in perturbation theory both for renormalizable 
and superrenormalizable theories. Nonperturbative arguments may only 
suggest the consistency of (5.7). For example, one can try to compute 
GNC,2(P, 0) from AGN~,2(P, 0). If one assumes that AGN~,2/GNr -+ 0, one finds 
that AG/G--~ O. The analysis is not so simple, because of the exceptional 
momentum configuration. However, the problem can be studied in great 
detail.t 5~ 

The main consequence of (5.7) is that the relevant region of integration in 
x remains bounded when 2 goes to infinity also. Three different limits can be 
studied : (I) 2 goes to infinity at fixed g r gc; (II) 2 goes to infinity at g = &; 
(IID A~ t2 goes to zero at fixed P and u, or equivalently 2 -+ oo and g --, gc 
together. Let us study, in order, these three limits. 

When 2 ~ oo, x/2 --, O. In this limit we can freely substitute in ~(2/x, g) 
its asymptotic limit (x/2)4-DN(g) and extend the integral to infinity. The 
leading term comes from the region where g is very small. If the first nonzero 
contribution to G is of order k 

GNR(PIm2, g) = gkGg~k)(Plm2 ) + O(gk+ 1) 
(5.8) 

AGNR(P[m 2, g) = j~  AG~k~(pIm2) + O(g k + ~ ) 

we find 

bl k 7-N/2t,7]~ ~ ~-[k(4--D)-dN] 

x ( ~ dx x - ~  + ~ -  ~ aO~<*~(xPIm ~) 
go x 

F k 
-- Z~[12(ff ) ~ 4 - ~ J  G~v(k)(,~P[m 2) (5.9) 

We have just recovered the expansion in powers of  the bare coupling constant, 
which is known to give the dominant term in the large-momentum region. It is 
easy to see that (4.1) is identically satisfied. 
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If we start directly from g = go, the situation changes dramatically. The 
bare parameters are infinite; however, 

g(gc, x) - go, lim Z , [9 (g ,  x ) ] /Z l (g )  = x 2"~' (5.10) 
g~gc 

Equation (5.5) simplies to 

= ( ~ ' - - X  -dz~- A G S ( x P ] m 2 ,  gc) (5.11) GNR(2P] m2, go) -- 22~N + Nc" dx ,v~.~, 
do x 

Our assumption implies that the integral is convergent when 2-~ ~ .  The 
upper limit of integration can be taken equal to infinity; neglecting terms that 
vanish in this limit, we obtain 

GNR(2plm2' g) :" ~ X :~) __2.)dN_Nc P. dx  x dN-Ucl"  AGNR(XF]m 2, gc) 

(5.12) 

The integral no longer has any )~ dependence. The correlation function in the 
large-momentum region satisfies a simple scaling law. The functional form of 
the correlation function is given by an integral on the correlation function 
computed in the low-momentum region. We have solved the problem of com- 
puting functions in the large-momentum region, where renormalized pertur- 
bation expansion is not convergent, using as input only correlation functions 
computed in the low-momentum region, where the renormalized perturbation 
expansion is more reliable. 

We are now ready to study the limit m -~ 0 at fixed u of the correlation 
function of the unrenormalized field. 

Using dimensional arguments and the definition of renormalized correla- 
tion functions, we can derive the following chain of identities: 

GNR(ppIm2/22, U) = 2-dUGu~(2pPjrn 2, u,~ 4-D) 

= Z~/Z(g)).-'~NGNR()q~PIm 2, g) (5.13) 

where 9 is a function of 2, u, and m 

g = p [24-  Du/m4-D] : R -  1 [m/2uI/(r (5.14) 

Using (5.4) and (5.5), we obtain 

(5.15) 
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From the definition of.q, Eq. (5.5), it follows that 

Without loss of  generality we can take m x = u z/~4- ~); any other value of m x 
can be reached by changing 2 

(5. l 7) 

We stress that (5.17) is an identity which can be derived without assump- 
tions. I f  we send 2 to infinity, the integral may diverge or converge. The 
possible region of divergence comes from x very large. In this situation 
R -  i [l~/x] -* go. I f  the high-momentum behavior of  AGN at g = gc is good 
[see Eq. (5.7)], the integral is convergent. However, the limit 2 --+ oo does not 
exist in the perturbation expansion. R -  1(l/x) is a finite-order polynomial of  
xl4- D) and clearly diverges when x ---, oo. I f  we include enough higher orders 
in the bare coupling constant, the decrease of  AGN(xP) when x --, ~ can no 
longer compensate for the faster and faster increase of  R -  1(l/x), and infrared 
divergences appear. However, if we use a function R which satisfies (5.6) and 
AGN computed at any order in perturbation theory, infrared divergences 
disappear. 

I f  the zero-mass theory holds, or our two assumptions on the finiteness 
of  the renormalized correlation functions in the limit u -* oo at fixed m and 
on the large-x behavior of AGNR(XP) are valid, the upper limit of integration 
can be shifted to infinity 

Let us study Eq. (5.18) in the two different limits. When p--~ oo, the 
situation is very similar to the first case we have studied. An expansion in 
powers of  u/p 4-~  can be obtained. This expansion breaks down at the same 
order in u at which infrared divergences appear in perturbation theory. The 
coefficient of  the next power in p is no longer analytic in u. When r  0, 
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x/#  goes to infinity, and at the leading order in #, barring corrections of  order 
#2b', we find 

GNB(#P]0, u) ~ - T  -- 2SN+ NcI' fO~ dXx x-aN N/2c1' AGN(xPlu2eI4- o), 9c) 

(5.19) 

The coefficient of/~dN+Ncl' is strongly nonanalytic in the coupling constant: 
e.g., if we consider the two-point correlation function, we obtain 

G2B(P) e .  0' au-  z~i,/~4 - D)p2 - 2c~ (5.20) 

where a is a pure number:  

a = - 2 dx x 1 -XmCr AG2R(x[m 2, 9c) (5.21) 

Correlation functions are no longer C o in the coupling constant in the small- 
momentum region. It is not a surprise that the at tempt to compute the Taylor 
expansion of a discontinuous function produces infrared divergences. 

Comparing (5.11) with (5.18), we verify that the low-momentum be- 
havior of  the zero-mass theory and the large-momentum behavior of the 
theory computed at g = 9c are the same. 

It is clear that in this approach infrared divergences are completely 
washed out; the only welcome trace of their presence comes from the non- 
analyticity in the coupling constant. The problem of computing the zero-mass 
behavior of  correlation functions is reduced to the computat ion of correlation 
functions at finite values of the external momenta.  The scaling law (4.14) is 
satisfied also at K ~ 0, r ---, 0. The corrections to the scaling law are ruled by 
the same exponent ~o 

G2(0, r) = r - ' [ 1  + O(z~~ Gz(K, 0) = (1/K2-")[1 + O(K'~ 
(5.22) 

6. S IMPLE  E X A M P L E S  

The general analysis of  the correlation function near the transition for the 
partition function (2. t) is now completed. The critical exponent and correla- 
tion function of the zero-mass theory can be computed as integrals over the 
correlation functions of  the massive theory. Before looking for the possible 
generalizations of  the model, we want to study a few concrete examples. 

We compute the b, c 1 , c 2 , and l functions in the one-loop approximation. 
The relevant Feynman diagrams are shown in Fig. 1. Diagrams (a), (b), and 
(c) contribute respectively to the functions b, c 2, and I. No diagram 
contributes to ca. 
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(a) (b) 

(c) 

Fig. I. Diagrams involved in the computation of the b, c 2, and l functions in the one-loop 
approximation. 

The final result is (51~ 

F , 4 ( 0  , 0 ,  0 )  = /d -1- U 2 N -~-__8 /(m2 ) + O(U3 ) 
6 

N + 8  0 2 
AF4 - 6 u2m 2 ~m ~- l(m ) + O ( b / 3 )  

N + 8 _ O ) g l 2 m 2 C  _ _  _ /T/2(4 I(m 2) 
6 ~' 63m 2 

(6.1) 

In the same way we find 

AZ2 - 2 (4re) 2 6 

These formulas  imply 

4 - D  
b(g) - 

2 

Cl(g ) = O + O(g2), 

C2 c - -  

A G - 2  (4~c) 2 F 3 -  (6.2) 

g[1-g~] + o(g s) 

c2(g) = c2~g/g~ + O(g 2) 

] ( g )  -- 2(4~r) 2 ]7 3 - -  q- O ( g )  

4 - -  D N + 2 ( 4~ )D /23 (4  - -  D )  

2 N + 8 '  g~ = (N + 8)F(3 - D/2) 

(6.3) 

(4g)D/2 F 2 - ?/12(2-D/2) 

m 2 d  (4r0 L'/2 1 ( D )  ~m2I(m 2) - Y 3 -  m 2(2-v/2) 

Note  that when D - ~  4, F 4 diverges (a renormalizat ion o f  the coupling 
constant  is needed) but AFr remains finite. It is very impor tant  to realize that 
AF 4 is nonzero  in four  dimensions only because F4 is divergent. 
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(a) (b) 

(c) (d) 

<2> 
(e) 

Fig, 2. Diagrams involved in the computat ion of  the b, c 1, and c 2 functions in the two-loop 
approximation. 

P u t t i n g  (6.3) i n to  (4.8) a n d  (4.10), we o b t a i n  

u g 
m 4 - DI2 1 - g / g ~  

d m 2 [  I~ ] 2s D 
-dT - 1 +g<m4_~ j  

C - 2(4~)z F 3 - oo rh~2+4-~ 

1 
G z ( K  , m 2 ) -  K2 + m 2 

I /d 1 4C2</(4- D) 
1 + ~ - D  

gem 

(6.4) 

N e a r  the t r ans i t i on ,  these  f o r m u l a s  s impl i fy  to  

m 4 - Dgc2 
g = gc 

u 

c]m 2 _~bl]2C2"/(4-D)m_2C2, 

T L~J (6.5) 
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The critical exponents are 
1 

2 - [ (N + 2)/(N + 8)](D - 4) (6.6) 

7 = 2v, r 1 = O, ~ = 2 - D r ,  

For  the three-dimensional Ising model  we obtain 

7 = 1.2, v = 0.6, r / =  0, 2 c - 9cF(3 - D/2)3/(4zc)  D/z = 1 (6.7) 

For  D sufficiently small we find v < 0. A negative value o f  v implies that 
the system has no transit ion at finite temperature.  The reason is simple. The 
integrated form of  the scaling law d M 2 / d m  = m I1/v)- ~ is 

M 2 - -  Mo 2 oc ( 1 / v ) m  1/~ (6.8) 

where Mo 2 is an integrat ion constant .  I f  1/v is positive, Me 2 (the critical value 
o f  the temperature)  is simply Mo2; however,  if 1Iv is negative or zero, M~ 2 is 
located at - ~ and cannot  reach finite temperature.  It  depends on the details 
o f  the model  whether Mc 2 ~ - ~ corresponds to zero temperature.  

A transit ion is also present in the one-dimensional  Ising model  
(1/v  = 1 > 0), while no transit ion is correctly found  in the spherical model  if 
D ~< 2 (v < 0). It is o f  interest to note that  at this simple order  the exponents 
for the spherical model  are the exact ones. In the case o f  the Ising model  the 
correct ions to the classical exponents seem to be in the right direction. H o w  
can the approximat ion  be improved?  

A first possibility, advocated by Wilson, ~s~ is based on the observat ion 
that  9c is o f  the order  4 - D when D is near to 4. This proper ty  is not  
destroyed in high orders in per turbat ion  theory:  we can compute  both  9~ and 
the critical exponents  as a formal power  ofe  = 4 - D. This is possible because 
the linear term in b ( 9  ) is propor t ional  to -�89 and in the limit E ---, 0, b(g) 
is a finite, nontrivial  funct ion o f  9. The finiteness o f  b(g )  in dimension 4 is far 
f rom being a trivial s tatement:  it is connected to the existence o f  the 
renormalized four-dimensional  q~4 theory in per turbat ion  theory. (36) 

In this si tuation we need to compute  only the first k- loop diagrams to 
get the critical exponents up to the order  e k. In the case o f  the N-componen t  
model,  the following results have been found:  

N + 2 (N + 2)(N 2 + 22N + 52) E2 + O(E3 ) 
? = 1 +  e +  

2(N + 8) 4(N + 8) z 
(6.9) 

q - 2 ( N + 8 )  2 1 +[_  ( N + 8 )  2 e + O ( ,  4) 

I f  we use Eq. (6.9) in the case N = 1, D = 3, we get 

y = 1.244, q = 0.037, v = 0.628 (6.10) 
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Higher order corrections up to e 4 have been computed. (12'511 The expan- 
sion is not convergent; the generical terms increase like ekk!. (s2) However, 
there are good arguments which suggest that the correct results are obtained by 
using the Borel summation technique. Indeed one finds, for N = 1, D = 3, (5~) 

= 1.235 + 0.004, t /=  0.0333 + 0.0001, v = 0.628 _ 0.002 

(6.11) 

A different approach, which avoids the use of noninteger dimensions at 
intermediate steps, consists in computing directly the k-loop contributions at 
fixed dimensions and in a first approximation neglecting higher orders in 
g.(13,53) The two methods produce the same results up to the order ek but are 
different at finite e. The final answer is 

N + 8  z [10N + 44 
2 b ( 2 ) = - ( 4 - D ) 2 + ~ 2  - i -  ~ f ( D ) - -  

N + 2 N + 2  2 
C2(2)= 18 2 - [ 6 f ( D ) - h ( O ) ]  3 ~ - - 2  +O(43 ) 

C1(2) = N ~ 2  h(D)22 + 0(23 ) 

3r(3 - D/2) 
2 -  (41t)~/2 g 

where 

N + 2  3 
8~--h(D)12 + O(44) 

(6.12) 

f(4) = 1.0, f (3)=0.2/3 ,  f(2) ---0.56 
(6.13) 

h (4)=  1.0, h(3) ~-0.59, h(2) -~0.46 

Unfortunately, at this approximation the function b(2) in Eq. (6.12) has 
no zero in dimensions less than 3.5 if N = 1. We know a priori that the loop 
expansion is not convergent and that resummation techniques should be used; 
although the Borel technique is the best suited to cope with this divergent 
series, we use for simplicity a Pad6 approximant. The presence of a zero is 
restored and the critical exponents can be evaluated. 

In Fig. 3 we show the functions v(D) computed to the first and the second 
order in E, computed in the one- and two-loop approximations, using the 
Taylor expansion, and that in the two-loop approximation using the Pad6 
approximant. The upper part of IIP is the analytic continuation of the lower 
part and it has no physical meaning as far as phase transitions are con- 
cerned, No transition is found in the one-dimensional Ising model, i.e., 
1/v slightly negative. 
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.66 

! j ~ P  

02 r 

Fig. 3. Plot of the critical exponent v of the Ising model in different approximations: EI and EII 
are, respectively, the first and the second order in e; I and II are the critical exponents 
produced respectively by the one-loop and the two-loop approximations using the gc given by the 
Taylor expansion, while in IIP we use the gc computed from the [2, 1] Pad6 approximant. 

In  the t h r e e - d i m e n s i o n a l  I s ing  case we f ind 

7 = 1.256, q = 0.033, v = 0.638, 2 c = 1.73 (6.14) 

A lways  at  the  t w o - l o o p  level, bu t  u s ing  the P a d e - B o r e l  r e s u m m a t i o n  
t echn ique ,  we get (1~ 

7 = 1.247, t7 = 0.028, v = 0.633, 2 C = 1.60 (6.15) 

The  success o f  this c o m p u t a t i o n  has  led people  to use m o r e  i ndus t r i ous  
t e chn iques :  all the d i a g r a m s  up  to six loops  have  been  c o m p u t e d  (1042 
d iag rams) ,  (54) a n d  a s y m p t o t i c  es t imates  for h igher  loop  d i a g r a m s  have  been  
found.(12) 

b(2) = ~ bk 2k, bk ~ C(-A)kF(k + 9/2) 
k 

C = 0.03996, A = 0.147742 

(6.16) 

The  final  resul t  is  (1~ 1) 

7 = 1.241 + 0.002, q -- 0.031 _ 0.004 

v = 0.630 _+ 0.0015, 2~ = 1.416 _+ 0.005 
(6.17) 
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For the two-dimensional Ising model a similar procedure, starting from 
the knowledge of only four-loop diagrams, gives ~1 t/ 

7 = 1.79 _+ 0.09, r / =  0.13 _+ 0.07 
(6.18) 

v = 0.97 _+ 0.08, ),,, = 1.85 _+ 0.10 

The results in the two-dimensional case are worse than those in the three- 
dimensional case. There are two reasons for this: the effective value of g is 
larger and the precision is decreased; the result of any computat ion of this 
kind is automatically an analytic function of N; however, we know that the 
critical exponents are discontinuous around N = 2: the critical exponent 
jumps from 1/4 to 0 for N greater than 2. (55"56) I f  we do not consider the con~ 
tribution of very high orders in 9, poor  results should be obtained for N too 
near to 2. 

7. THE RANGE OF THE R E N O R M A L I Z E D  
COUPLING C O N S T A N T  

An interesting problem is the determination of the possible values that 
the renormalized coupling constant may assume. It is clear that when the bare 
coupling constant u is in the 0 to oo range, the renormalized coupling ranges 
from 0 to gc. A theory with 9 greater than gc cannot be obtained as limit of  
theories where the bare coupling constant is finite, but it could be obtained 
as an analytic continuation in the renormalized coupling constant from the 
good region 9 ~< go. We shall see below that there is a cut, starting from go, 
which forbids the analytic continuation to greater values of  the renormalized 
coupling constant, and that gc is the greatest allowed value. This result implies 
that, if ultraviolet divergences are eliminated using dimensional regulariza- 
tion, the four-dimensional theory is always flee. (m 

Let us assume that all the correlation functions are C ~ functions of  the 
coupling constant and that b(9) has a simple zero at g = 9c. This hypothesis 
is not consistent with the differential equation (5.23) unless an infinite number  
of  independent sum rules is satisfied; this last possibility is rather unrealistic; 
moreover,  in the framework of the 1/N expansion it is possible to check that 
the sum rules are not satisfied and a cut is present at gc, To be specific, 
let us consider the case of the F 6 function computed at zero external 
momentum. Then Eq. (5.4) reads 

d '  R 2D-6 Z 3 
r e ( g ) = _ f  I [q [ (ff)~ [ l(g)'] AF " " 

- ~'~d 'g~ - g '  f(g) ( J ~ - g ) ~  
AF6(g') (7.1) 
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where B 0 = (D - 3 + 3CaC)/b ' and the function J(g)  is C ~ around go. If B 6 

were negative, Eq. (7.1) could be written as 

r~(~)  = / ( g ) ( g ~  - g)~o ag '  (g~ - g ' )  ~~ AF~(g') 
b ( g ' ) f ( g ' )  

f/ c (9~ _ g)B6 J(g) AF6(g' ) (7.2) 
-- dg'  b(g ' ) (gc  _ g,)B6 f ( g , )  

If  B 6 is positive, but is not an integer, Eq. (7.2) is still true provided that the 
integrals are defined as analytic continuations in B 6. In both cases, the second 
integral is C ~ around g~; the first term, if it is not identically zero, has a cut 
of the type (go - g )B6 .  (49) 

Equation (7.2) implies that the renormalized Green's functions must be 
singular at g~; this equation, however, cannot be correct as it stands: if D = 3 
the value of B 6 is only slightly positive and becomes negative for D slightly 
less than 3. Indeed there is a loophole in the argument; if F6(g ) has a cut at 
g = g~, then AF(g) also must have a cut of the same strength as F6(g). 

It has been shown in Ref. 57 that under a technically simplifying 
hypothesis, we can write the following equation (we have neglected operator 
mixing): 

[b(g) 0/~ 9 + 3 - D - C6(g)]I"6(g) = / ~ F 6 ( 9 )  (7.3) 

where the singularity o f  AF6(.q ) at g = gc is less strong than that of [ ' 6 ( g ) ,  

the function C 6 ( g  ) being the "anomalous dimension" of  the operator ~b6: 

12 + 3N 
C6(g) 2 + 0(2 2) (7.4) 

8 + N  

The quantity A 6 = 3(D - 2) + C6(9c ) is the effective dimension of the 
renormalized 4} 6 operator at the critical point: 

1 2 + N  
- -  A 6 = 6 + 2 + O(e 2) (7.5)  (r162 ~ x2AO, ~ E 

An equation similar to (7.2) holds, where n o w  B 6 = (.4 6 - D) /2b ' .  The 
power of  the singularity is controlled by the dimension of the q~6 operator, 
as it should be. {58'59) The disaster B 6 < 0 happens only if .46 < D, which 
would be a definite signal of  serious problems (see next section). 

The physical origin of  these singularities is quite clear; an a priori 
argument can be given for their existence; the only difficulty is to see their 
appearance in the present formalism. In the limit co--, oe the following 
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expansion for the renormalized Green's  functions is expected to hold: 

FR(o)) -* FR(oo) + ~ R . u  (D-~")/~, D = 4 - E 
tl 

(7.6) 

where the A, are the effective dimensions of all the possible local operators. 
Let us consider for simplicity only the q~" operators with even n (n v a 2). 
Equation ( . ) clearly shows why we need the condition A, > D, and com- 
paring it with Eq. (4.12), we get the identification 

2b' = A4 - D (7.7) 

It is easy to see that Eq. (7.6) implies the presence of a cut in the 
renormalized constant complex plane of the form 

(gc - g){A 6 - -  D ) / ( A 4  - -  D) (7.8) 

As a last remark, we notice that in 4 - E dimensions we have a relation 
between the singularities of  the Green's functions at 9 = gc = O(e) and the 
singularities due to ultraviolet divergences of  the Borel transform of the 
Green's functionsJ 57~ We only quote the result: 

F6(~) ~ ()'c -- )OB6[z/sin(~B6)] AC6(2) (7.9) 

which can be written also as 

I m  F 6 ( ~  ) ~ (J~ - ) % ) B 6 0 ( / ~  - -  2r ) (7.10) 

where A~6(t ) is the Borel transform of F6(~ ) with respect to 2 [see Eq. (6.12)] : 

co co 

AF6(2 ) = ~ t,2", 7~C6(Z ) = ~,  I,Z" (7.11) 
n 1 ( n -  1)! 

8. ON U N I V E R S A L I T Y  

Until now we have discussed only a 2q~ 4 interaction. It  is clear that the 
whole approach is of  little interest if the results cannot be extended to much 
more general interactions. 

We consider a more complicated model 

Zoc f d[(a]exp f dDx~(x) (8.1) 
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where 

1 "~ 2 b/0 
--~(x)  = a.~(x) ~"~(x) + ~ M-q~ + 4.' ~(x4) 

-~- Ul(~6(N) ~- U2[-A@(X)] 2 -~ ... (8.2) 

The field 4) is still defined on a continuous space M, and the u's  are arbitrary 
functions of  the temperature. The number of  parameters may be arbitrary. 

For simplicity we assume that all interaction constants u, Mc 2, and 
~ 2  = M 2 _ Mc2(u) are regular functions of  the temperature [Mc2(u) is the 
value of the bare mass at the critical temperature].  I f  in the limit 214 2 =~ 0 
thermodynamic quantities are regular functions of  the other parameters,  we 
can neglect their temperature dependence near the transition. This is the 
general case, although more complicated situations can occur near a tricritical 
point/5~ In conclusion, without any loss of  generality we assume that near a 
simple critical point the partition function depends on the temperature only 
through the ~ 2  term: 3~r oc T - T o .  The techniques used in the other 
sections can be easily extended. Renormalized fields, mass, and coupling 
constants are defined in such a way that the only dimensional parameter  is the 
mass. For example, in a theory described by the Lagrangian (8.2), a possible 
choice of  coupling constants could be 

go = F4( 0, 0, 0)m 0 -4 ,  g l  = 1-6( 0 , 0, 0, 0, 0)m 2D-6 

g2  = ( d / d K 2 ) 2 F 2 ( K 2 ) I K 2 :  0 m2 
(8.3) 

It may be convenient to define the coupling constants in such a way that 
if the interaction contains only a 4) 4 term, all coupling constants except go 
are zero. 

We introduce the A operator  

A = r n 2  0 , ,Drn  ~ _ c~ 
3 l s  2 u, 

(8.4) 

and we define a set of  b functions 

In compact  notation 

A g  i = bi(g  o ..... g j) 

0 
0 lgm 2 ~g = b(g) 

(8.5) 

(8.6) 
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The integration of the system (8.6) yields the renormalized coupling 
constants as functions of the bare ones and the renormalized mass 

g = p (m,  u) (8.7) 

The bare coupling constants play the role of  integration constants or 
boundary conditions to the solutions of  the differential equations in the limit 
m ---> (x3. 

Approaching the transition, m goes to zero and log m goes to - ~ .  If  
the limit 

g~ = lim p(m, u) (8.8) 
m ~ 0  

exists and is finite, then 

b(gc) = 0 (8.9) 

We say that gc is a fixed point if (8.9) is satisfied. However, if g~?~ is a 
particular fixed point, the actual limit in (8.8) may be different from gc (~1 

unless this fixed point is attractive and the set of  bare coupling constants is 
inside its domain of attraction. (s) The first condition implies that the real part  
of all the eigenvalues of the matrix 

0b; (8.10) 
Bik -~" ~ k  0 = g~ 

are positive. Its eigenvalues control the deviation from scaling near the 
transition. The exponent co defined in (4.20) is 1/2B~i ~, where Bmi . is the 
minimum eigenvalue of B. I f  we recall Eq. (7.6), we find that the eigenvalues 
B, of  the matrix B are connected to the effective dimensions of  the 
renormalized operator by 

B, = A, - D (8.11) 

The condition A, > D (i.e., absence of relevant operators) imposed in the 
previous section is equivalent to the stability of  the fixed point. 

Both the critical exponent and the detailed form of the correlation 
functions in the critical region depend only on the fixed point. They are the 
same in all the theories which belong to the domain of abstraction of the same 
fixed point. The dependence of the critical exponent on the detailed form of 
the interaction is absent; only discontinuous behavior can be found. [We have 
assumed that the system of equations b(g) = 0 has only a discrete set of  solu- 
tions. I f  lines of zeros are present, the critical exponent can have a con- 
tinuous dependence on the parameters of  the bare interaction.] 

We stress that by increasing the complexity of  the interaction, new fixed 
points can be created, but the old ones cannot disappear. However, they can 
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become unstable. The results of the 2q5 4 model can be applied to other models 
only if the matrix A does not develop negative eigenvalues when new inter- 
actions are introduced, and the bare coupling constants of the new inter- 
actions are not too large. 

In dimensions near enough to 4 all local interactions which involve more 
derivatives or higher powers of the fields have positive eigenvalues, and the 
smallest one is b'. If  N r 1, the only possible relevant operators must be 
quadrilinear or bilinear with different dependence on the internal degree of 
symmetry; their presence accounts for the different behavior of the isotropic 
and anisotropic Heisenberg models. 

We have just arrived at the conclusion that a wide class of interactions 
have the same renormalized correlation functions at the critical point. It 
would be nice to compute these correlation functions without committing 
ourselves to any particular interaction. This can bedone  by deriving integral 
nonlinear equations for the renormalized correlation functions which are 
valid only at the critical point. 

Comparing (5.4) with (5.11), we find that the fixed point is character- 
ized by the fact that the correlation functions GN(FN) can be computed as 
integrals over the correlation functions AGN(AFN) evaluated at the same value 
of the coupling constant. If we are not at the fixed point, (5.4) also involves 
AG~(AFN) functions computed at all possible values of the coupling con- 
stant. Moreover, the AGN(AFN) can be easily computed from the knowledge 
of the first N + 2 of  the G(F) functions. The correlation functions of  q~R 2 
with the other N of the q5 R fields can be written as an integral over some 
nonlinear combination of the correlation function of  the N + 2 field, using 
the relation ~bR 20C (~R) 2. 

The generating function of the connected (amputated one-line irre- 
ducible) correlation functions satisfies a nonlinear functional equation 

G = F(G) IF = F(F)] (8.12) 

This equation has the same structure as the Schwinger equation ~3I) for the 
generating function of a polynomial interaction. The main difference is that 
no possible small parameter exists in (8.12): it is not clear how to construct 
a simple algorithm which would allow the iterative solution of this equation. 

9. C O N C L U S I O N S  A N D  O U T L O O K  

In this paper we have formulated a field-theoretic approach to the theory 
of second-order phase transitions, based on the renormalization group; in 
this approach, spaces of  noninteger dimensions play no role and everything 
can be done without leaving the three (two) dimensional space. 
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Simple computations of the critical exponents of the three-dimensional 
Ising model have been shown in detail; reasonable results are obtained. If 
longer computations are done, better results are obtained: the critical 
exponents are estimated with an error less than 10 -3 . 

We cannot claim to have proved the validity of the scaling laws : we have 
only derived them, starting "reasonable"  hypotheses. However, it is grati- 
fying that these hypotheses can be explicitly checked in the 1/N expansion. 

The extension of this method to other systems undergoing a second-order 
phase transition is straightforward: indeed, it has been used to compute the 
critical exponents of the Reggeon field theory with good accuracy3 6~ 

APPENDIX  

In tlais appendix we define the notations used in the text, 
We consider the partition function (2.10) in the presence of a point- 

dependent magnetic field H 

where 

2e(x, H) = -~  ~.4(x) #"4(x) + M2@(x) + ~ 4)~(x) + H(x)4)(x) (a.2) 

is a functional of the magnetic field H. We define the free energy functional 

G[H] - - ln{Z[H]}  (a.3) 

Z is the generating functional of the correlation function of the field ~b, while 
G is the generating functional of  the connected (truncated) correlation 
functions 

c~H(xl) "'" ,3H(XN) H=o -- (qS(xl) "" q~(xN)) 

=fa[4,14,(Xl)'"4,(x~)exp[-fa~ 1 

aNG 
= ( q ~ ( x l )  " "  (O(XN))c = GN(,X 1 "'" Xlv- ) ( a . 4 )  

H ( X 1 )  ... H ( X N )  
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o r  

G[H] = ~,, , H(x,) dDx~ ~ r (A.5) 
1 

The magnetization of the system is 

p(x, H] = ~?G/aH(x) (A.6) 

p(x, H] is a function of x and a functional of H. 
The functional (A.6) can be inverted, producing the magnetic field as a 

functional of the magnetization H(x, p]. 
The tree energy at constant magnetization can be introduced by perform- 

ing a Legendre transformation 

F[]~] = ['dDx p(x)H(x, p] - G[H[p]] (A.7) 
/ w 

F[p] is the generating functional of the connected one-line (one-particle) 
irreducible correlation functions 

6 N F  U = 0  ~'~ F N ( X  1 "'" X u )  (A.8) 
~ (xz )  "- a/4xN) 

I f  u = 0 ,  the partition function Z can be explicitly computed 

Zo[H]  oc exp - f dx dy �89 - y, M)H(x)H(y) (A.9) 

where D(x - y ,  M )  satisfies the differential equation 

(A~ + M2)D(x - y, M) = (A, + M2)D(x - y, M) = (SD(x -- y) (A. IO) 

If u is different from zero, (A. 1) can be formally written in compact notation 
a s  

Z[H] oc exp -~.~ dDx Zo[H ] (A.11) 

The expansion of the first exponential in (A.10) in powers of u reproduces 
the standard perturbation expansion, Eq. (3.5). 

The functional Z satisfies the Schwinger functional differential equation : 

(Ax + M 2 ) H ( ~  + 3.v + H(x) Z[H] = 0 (A. 12) 

Equation (A. 12) is very similar to a Kirkwood-Salisbury equation; it yields 
the N-point correlation functions as an integral over the N + 2 correlation 
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functions 

6 ~ x ) 3 z f [  ~.b/3/ 6 ' 3 ]_ 
- <,oy y, + _1 

The 45 field is defined as the square of (#2. Its correlation functions are defined 
by 

ZN.~,2(xl "'" XN, y) = (4)(X,) "'" (#(XN)4)(y)4)(y)) (A.14) 

From (A.14) one can obtain the connected and the amputated correlation 
functions of  (#2. 

In this paper one normally considers the Fourier transforms of the 
correlation functions G u and F N. They are defined as follows: 

GN(Pa "'" PN- 1) 

f dDxl "'" dDXN - 1 exp{i[PlXl  + "'" + PN- lxN - 1]} GN(XI "'" X~_ 1, O) 

GNr "'" PN-1, K) 

= t'dDXl "'" dDXN_I dDy (A.15) 
d 

x exp{ i[Plx  I + ... + PN_lXN_I + Ky]} GN+2(X 1 "" XN_I, O, y, y) 

f eieX 2 2 D,~c)~(P) = d~x ((# (x)4) (0))~ 

Similar definitions are valid for the F~ functions. Sometimes the vector K is 
omitted from the argument of GN,~; in such a case it is supposed to be zero, 
e.g., 

G2,~(P) = f dDx dDy deXG24~2(x, O, y) (A.16) 

The correlation functions of  the renormalized theory field are denoted by 
Gff(Uff) .  To simplify the notation the subscript R is omitted in Section 8. 
In Section 5 the correlation function of the bare field acquires a subscidpt B 
to prevent any confusion. 
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